domingo, 8 de junio de 2014

Trabajo en Laboratorio

El objetivo de este trabajo es determinar el coeficiente de roce estático y dinámico para madera/madera y aluminio/aluminio.-

Materiales:  Un bloque de madera – Un riel de madera - Un riel de metal – Un adaptador metálico para bloque de madera – Un dinamómetro de 1N - Un dinamómetro de 5N

Utilizando los conceptos teóricos, determinar el coeficiente de roce estático y dinámico, para un bloque de madera sobre una superficie de madera y para un bloque de metal sobre una superficie de metal.-
Recuerde que, la fuerza de roce es aquella que representa la resistencia al deslizamiento de un cuerpo de cierto material, sobre una superficie de determinado material.
Con el coeficiente de roce estático calculado, coloque sobre el bloque de madera un cuerpo de peso determinado, luego trate de deslizarlo sobre el listón de madera y estime la fuerza necesaria para sacarlo del reposo. Compárelo con el resultado obtenido, de acuerdo a la medición que deberá Ud. realizar.-

Coloque la plataforma de madera, con una inclinación de 30º con respecto a la horizontal y mida la fuerza necesaria para sacarlo del reposo, tratando de deslizarlo hacia arriba. Compare estos resultados con los anteriores. Son iguales o distintos? Justifique su respuesta en cualquiera de los dos casos.

lunes, 19 de mayo de 2014

Fuerza de roce y coeficiente de roce

Vamos a profundizar el estudio del rozamiento por deslizamiento entre superficies sólidas


El rozamiento entre dos superficies en contacto ha sido aprovechado por nuestros antepasados más remotos para hacer fuego frotando maderas. En nuestra época, el rozamiento tiene una gran importancia económica, se estima que si se le prestase mayor atención se podría ahorrar muchísima energía y recursos económicos.
Históricamente, el estudio del rozamiento comienza con Leonardo da Vinci que dedujo las leyes que gobiernan el movimiento de un bloque rectangular que desliza sobre una superficie plana. Sin embargo, este estudio pasó desapercibido.
En el siglo XVII Guillaume Amontons, físico francés, redescubrió las leyes del rozamiento estudiando el deslizamiento seco de dos superficies planas. Las conclusiones de Amontons son esencialmente las que estudiamos actualmente en los libros de Física General:
  • La fuerza de rozamiento se opone al movimiento de un bloque que desliza sobre un plano.
  • La fuerza de rozamiento es proporcional a la fuerza normal que ejerce el plano sobre el bloque.
  • La fuerza de rozamiento no depende del área aparente de contacto.
El científico francés Coulomb añadió una propiedad más
  • Una vez iniciado el movimiento, la fuerza de rozamiento es independiente de la velocidad.

La mayoría de las superficies, aún las que se consideran pulidas son extremadamente rugosas a escala microscópica. Los picos de las dos superficies que se ponen en contacto, determinan el área real de contacto que es una pequeña proporción del área aparente de contacto (el área de la base del bloque). El área real de contacto aumenta cuando aumenta la presión (la fuerza normal) ya que los picos se deforman.
Los metales tienden a soldarse en frío, debido a las fuerzas de atracción que ligan a las moléculas de una superficie con las moléculas de la otra. Estas soldaduras tienen que romperse para que el deslizamiento se produzca. Además, existe siempre la incrustación de los picos con los valles. Este es el origen del rozamiento estático.-
Cuando el bloque desliza sobre el plano, las soldaduras en frío se rompen y se rehacen constantemente. Pero la cantidad de soldaduras que haya en cualquier momento se reduce por debajo del valor estático, de modo que el coeficiente de rozamiento cinético o dinámico es menor que el coeficiente de rozamiento estático.
Finalmente, la presencia de aceite o de grasa en las superficies en contacto evita las soldaduras al revestirlas de un material inerte.
La explicación de que la fuerza de rozamiento es independiente del área de la superficie aparente de contacto es la siguiente:







En la figura, la superficie más pequeña de un bloque está situada sobre un plano. En el dibujo situado arriba, vemos un esquema de lo que se vería al microscopio: grandes deformaciones de los picos de las dos superficies que están en contacto. Por cada unidad de superficie del bloque, el área de contacto real es relativamente grande (aunque esta es una pequeña fracción de la superficie aparente de contacto, es decir, el área de la base 
del bloque).





En la figura, la superficie más grande del bloque está situada sobre el plano. El dibujo muestra ahora que las deformaciones de los picos en contacto son ahora más pequeñas por que la presión es más pequeña. Por tanto, un área relativamente más pequeña está en contacto real por unidad de superficie del bloque. Como el área aparente en contacto del bloque es mayor, se deduce que el área real total de contacto es esencialmente la misma en ambos casos.

Recuerden la tercera ley de Newton,  las fuerzas actúan por pares, si hay una acción aparecerá una reacción, de igual valor, pero de sentido contrario. En un plano horizontal, la fuerza normal, reacción del plano o fuerza que ejerce el plano sobre el bloque es igual al peso del bloque.
Supongamos que un bloque de masa m está en reposo sobre una superficie horizontal, las únicas fuerzas que actúan sobre él son el peso mg y la fuerza normal N. De las condiciones de equilibrio se obtiene que la fuerza normal N es igual al peso mg
N=mg=P


Fuerza de rozamiento por deslizamiento
En la figura, se muestra un bloque arrastrado por una fuerza F horizontal. Sobre el bloque actúan el peso mg, la fuerza normal N que es igual al peso, y la fuerza de rozamiento Fk entre el bloque y el plano sobre el cual desliza. Si el bloque desliza con velocidad constante la fuerza aplicada F será igual a la fuerza de rozamiento por deslizamiento Fk.



Podemos investigar la dependencia de Fk con la fuerza normal N. Veremos que si duplicamos la masa m del bloque que desliza colocando encima de éste otro igual, la fuerza normal N se duplica, la fuerza F con la que tiramos del bloque se duplica y por tanto, Fk se duplica.
La fuerza de rozamiento por deslizamiento Fk es proporcional a la fuerza normal N.
Fk=mk N
La constante de proporcionalidad mk es un número sin dimensiones que se denomina coeficiente de rozamiento cinético o dinámico.-
El valor de mk es casi independiente del valor de la velocidad para velocidades relativas pequeñas entre las superficies, y decrece lentamente cuando el valor de la velocidad aumenta.

También existe una fuerza de rozamiento entre dos objetos que no están en movimiento relativo.




Como vemos en la figura, la fuerza F aplicada sobre el bloque aumenta gradualmente, pero el bloque permanece en reposo. Como la aceleración es cero la fuerza aplicada es igual y opuesta a la fuerza de rozamiento Fs.
F=Fs
La máxima fuerza de rozamiento corresponde al instante en el que el bloque está a punto de deslizar.
Fs máx=msN
La constante de proporcionalidad ms se denomina coeficiente de rozamiento estático.
Los coeficientes estático y dinámico dependen de las condiciones de preparación y de la naturaleza de las dos superficies y son casi independientes del área de la superficie de contacto.

  • Coeficientes de rozamiento por deslizamiento para diferentes materiales
Superficies en contacto
mk
Acero sobre acero
0.18
Acero sobre hielo (patines)
0.02-0.03
Acero sobre hierro
0.19
Hielo sobre hielo
0.028
Patines de madera sobre hielo y nieve
0.035
Goma (neumático) sobre terreno firme
0.4-0.6
Correa de cuero (seca) sobre metal
0.56
Bronce sobre bronce
0.2
Bronce sobre acero
0.18
Roble sobre roble en la dirección de la fibra
0.48
Fuente: Koshkin N. I., Shirkévich M. G.. Manual de Física Elemental. Editorial Mir 1975.
  • Coeficientes de rozamiento estático y dinámico
Superficies en contacto
ms
mk
Cobre sobre acero
0.53
0.36
Acero sobre acero
0.74
0.57
Aluminio sobre acero
0.61
0.47
Caucho sobre concreto
1.0
0.8
Madera sobre madera
0.25-0.5
0.2
Madera encerada sobre nieve húmeda
0.14
0.1
Teflón sobre teflón
0.04
0.04
Articulaciones sinoviales en humanos
0.01
0.003


Fuente: Serway R. A.. Física. Editorial McGraw-Hill. (1992)

Rozamiento por deslizamiento

Ahora vamos a considerar la fricción o rozamiento entre dos superficies sólidas, las cuales se encuentran en contacto y una de ellas se mueve respecto de la otra.

Cuando dos superficies entran en contacto y una de ellas se pone en movimiento existe una fuerza que se opone a éste, dicha fuerza recibe el nombre de roce o fricción y es la causa de que se produzca calor cuando se frota una superficie contra otra.
Otra consecuencia del rozamiento es que se produce un desgaste. El mismo puede ser en ambas superficies o en una de ellas, depende de la dureza de los materiales en contacto. También aparece otro fenómeno, que es el ruido. Un automóvil  que frena bruscamente, produce un chirrido en sus ruedas.

Algunos ejemplos son:
* Las ruedas del auto al moverse sobre el pavimento.
* Cuando se frota una mano contra otra se produce una fricción que genera calor y calienta las manos.
* El agua de un río produce fricción sobre el lecho del río.
* Cuando se frotan dos objetos, como una piedra con un trozo de madera, se produce una fricción que genera calor.
* Un patinador de hielo puede avanzar muy rápido pues la fricción entre el hielo y las navajas de los patines es baja.
* Un objeto que entra del espacio exterior a la atmósfera terrestre, se incendia debido a la fricción que se produce entre ellos.
* Cuando se empuja una caja sobre una superficie áspera cuesta mucho trabajo moverla.
* Cuando el piso está mojado es más fácil resbalar, pues el agua disminuye la fricción del piso.
* Una soga que resbala en un trozo de madera puede quemarlo. 

Podrías tú buscar 4 ejemplos, distintos a los citados anteriormente, dibujarlos y explicarlos?. Manos a la obra.......... 
Analiza las siguientes imágenes y  encuentra porque aparece el ruido, el desgaste y el calor, cuando hay rozamiento.-





viernes, 25 de abril de 2014

Segunda ley de Newton

La que faltaba !!!!!!

La segunda Ley de Newton o Principio de Masa, indica cuál es la relación entre la fuerza ejercida sobre un cuerpo y la aceleración que el mismo adquiere.-
 El concepto de fuerza está ligado a las variaciones de velocidad. Cuanto más bruscamente (en menor tiempo) se produzca la variación, mayor es la aceleración del cuerpo.
    La masa es la propiedad del cuerpo que determina la aceleración que éste adquiere cuando se le aplica una fuerza.
    Newton descubrió la relación entre la fuerza aplicada y la aceleración producida y para establecer relaciones cuantitativas realizó experiencias cuyos resultados establecen que:



  "Una misma fuerza aplicada a cuerpos distintos produce diferentes aceleraciones y dichas aceleraciones son inversamente proporcionales a la masa de los cuerpos"


    "Fuerzas distintas aplicadas a un mismo cuerpo producen aceleraciones distintas y dichas aceleraciones son directamente proporcionales a las fuerzas aplicadas"

    
 "La aceleración que adquiere un cuerpo es directamente proporcional a la resultante de las fuerzas que actúan en él, y tiene la misma dirección y el mismo sentido que dicha resultante"

Con todos estos datos, podrías escribir la ecuación matemática que relaciona estos conceptos? Manos a la obra..............

A construir..................

Aprovechando lo aprendido en el principio de acción y reacción, vamos a construir algunos prototipos.
Recuerden que a cada alumno se le asignó un tema en clase.

Los temas para construir son:


Tema 1
Construir un auto cuya propulsión sea mediante el principio de acción y reacción, utilizando aire o vapor a presión para lograrlo.-

Tema 2
Construir un barco cuya propulsión sea mediante el principio de acción y reacción, utilizando vapor a presión para lograrlo.-

Tema 3
Construir una cañita voladora cuya propulsión sea mediante el principio de acción y reacción, utilizando aire a presión para lograrlo.-

Recuerden que los vehículos deben ser construidos por Uds. Deberán optimizar el diseño y los materiales usados, para lograr el éxito en el proyecto. Los vehículos deberán desplazarse o elevarse, según corresponda, para lograr la aprobación del mismo.-
Usen la imaginación para realizar la construcción y la forma en que debe usar la propulsión solicitada en cada tema. Recuerden que, en todos los casos, el movimiento deberá estar basado en el principio de acción y reacción. No se aceptarán prototipos que usen otro principio para moverse.-

Tendremos una clase de consulta para despejar todas las dudas.-

Buena suerte a todos!!!!!!

lunes, 7 de abril de 2014

Principio de Acción y Reacción

Ahora vamos a estudiar la tercera ley de Newton, también llamado Principio de Acción y Reacción.
Observen el siguiente video 

Del mismo pueden sacarse las siguientes conclusiones:

En primer lugar, las fuerzas existen siempre por pares: dado que son interacciones entre cuerpos, ambos ejercen una influencia el uno sobre el otro. No tiene sentido pensar en un cuerpo como originador de la fuerza y el otro como su receptor — ambos son, a la vez, originadores y receptores. Por tanto, no hay una fuerza sobre un cuerpo, sino dos fuerzas, una sobre cada uno de los dos cuerpos.
Aunque creo que es algo bastante intuitivo, tal vez una analogía económica les  ayude a asimilarlo mejor. Supongamos que el estado de movimiento en mecánica es el estado económico de una persona, y que las fuerzas –las modificaciones de ese estado– son ganancias y pérdidas de dinero. Toda ganancia o pérdida, de acuerdo con el tercer principio, no es algo que le sucede a un individuo aislado, sino que es una interacción entre individuos. Es decir, si ganas dinero, alguien te lo ha dado, y si lo pierdes, alguien te lo ha quitado. Los cambios monetarios son siempre interacciones entre dos individuos.
Esto significa que no es posible para un cuerpo modificar su estado de movimiento sin interaccionar con alguien más y, por tanto, modificar el estado de movimiento del otro.-

En segundo lugar, las fuerzas que aparecen sobre ambos cuerpos son de sentidos contrarios. Esto sigue siendo bastante intuitivo, porque lo llevamos notando toda nuestra vida, pero veamos un ejemplo concreto.
Imagina que tú y un amigo están sobre una pista de hielo perfectamente lisa, de pie el uno frente al otro, y en un momento dado pegas un empujón a tu amigo para alejarlo de ti. De acuerdo con el tercer principio, no tiene sentido decir simplemente que tú empujas a tu amigo en una dirección: el empujón se convierte en una interacción entre ambos en la que los dos sufren las consecuencias. Efectivamente, tu amigo empieza a moverse en una dirección, pero tú también sufres un empujón idéntico al suyo en sentido opuesto, y te alejas también del punto en el que te encontrabas

El tercer principio se pone de manifiesto, de hecho, constantemente en nuestras vidas, y seguro que has notado alguna de estas cosas:
  • Cuando estás en un bote junto a la orilla y te bajas del bote, éste se aleja de la orilla y puedes incluso caerte al agua si no eres lo suficientemente hábil.
  • Cuando disparas un arma y la bala sale disparada hacia delante, el arma a su vez sale disparada hacia atrás con retroceso.
  • Cuando saltas hacia arriba en un bote, el mismo se hunde un poco más en el agua justo en el momento del salto.
Hay una multitud de ejemplos obvios, pero si has comprendido la parte evidente de la cuestión, me gustaría pararme en los menos obvios. Si recuerdas la primera consecuencia del principio, no es posible empujar sobre uno mismo: las fuerzas son interacciones. Así, si estás de pie y en reposo sobre el suelo, no es posible modificar ese estado sin interaccionar con alguien. ¡No puedes siquiera andar tú solo!
Lo mismo sucede en cualquier otra situación: si estás flotando en el agua y quieres empezar a moverte, no puedes hacerlo tú solo. Si estás en el aire y quieres volar, no puedes hacerlo tú solo. Podríamos decir que éstas son las “malas noticias” del tercer principio: tú solo no vas a ninguna parte. Sin embargo, evidentemente, tú caminas todos los días, y seguramente alguna vez has nadado o has volado en algún vehículo, con lo que es posible hacerlo utilizando el tercer principio. ¿Cómo sucede esto?
Cuando quieres caminar, de acuerdo con el tercer principio, debes ejercer una fuerza sobre alguna otra cosa hacia atrás. Esa “alguna otra cosa”, en la inmensa mayoría de las ocasiones, es simplemente el suelo: lo empujas hacia atrás con los pies y, como consecuencia del tercer principio, tú sales impulsado hacia delante, en sentido contrario. Caminar es empujar el suelo hacia atrás.-
Pero ¿qué es nadar? ¡Empujar el agua hacia atrás, naturalmente! Cuando mueves los brazos y las manos al nadar, piensa en lo que estás haciendo: estás tomando agua, cuanta más agua mejor, con los brazos, y empujándola hacia atrás. Como consecuencia de esta interacción, el agua te impulsa a ti hacia delante. Lo mismo haces con las piernas y los pies, por supuesto. Y volar es, desde luego, la misma cosa: empujar el aire en una dirección para sufrir una fuerza opuesta. Así vuelan un pájaro, un avión o un helicóptero.

Ahora yo pregunto y tendrán que responder:
¿Como es posible que vuele una cañita voladora? 
¿Porqué es tan difícil caminar sobre una pista de hielo con zapatos o zapatillas?
Enumeren 2 ejemplos, distintos a los citados arriba, de situaciones de la vida real en la que ustedes consideren la analogía de la tercera ley de Newton.-

Seguimos con INERCIA !!!

Aprendamos jugando......
Aquí le dejo el  Trabajo practico para realizar en el aula.
Están las indicaciones y los materiales a utilizar. Todos los materiales son fáciles de conseguir y económicos.
Recuerden que, la práctica es individual.
Así que, manos a la obra..............